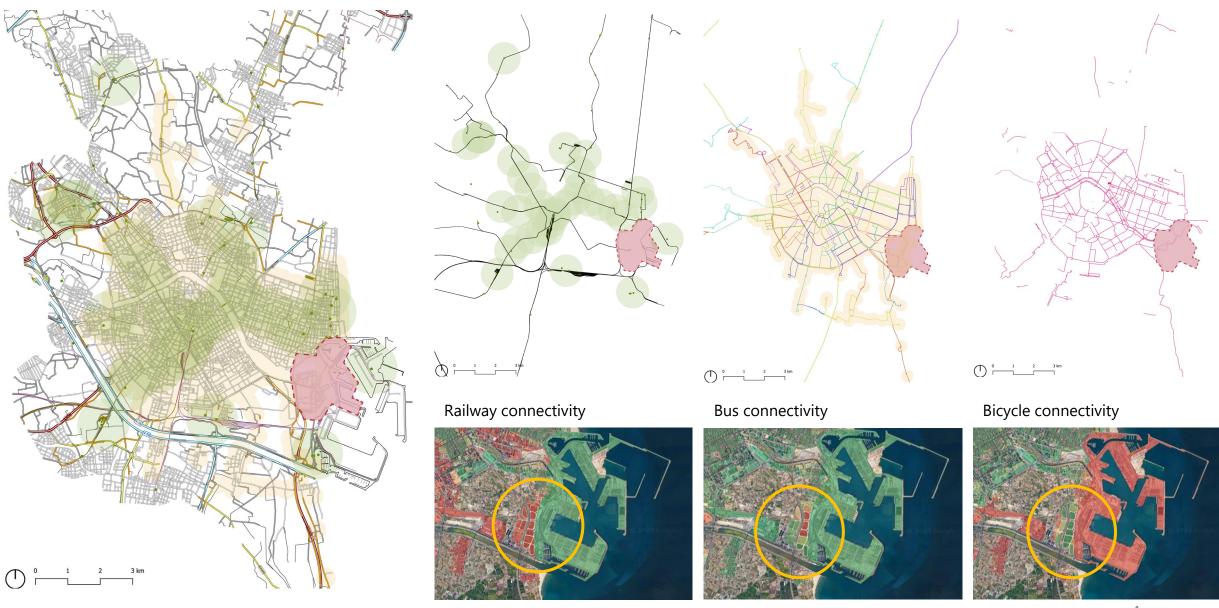

Valencia: Analysis of the City and Site

TASK 1

25.08.2023 RWTH Aachen University Mobility Infrastructure Team Christiane | Dora | Jinyu | Marija | Raveena | Yanran

REGIONAL SCALE: Existing Public Transport System

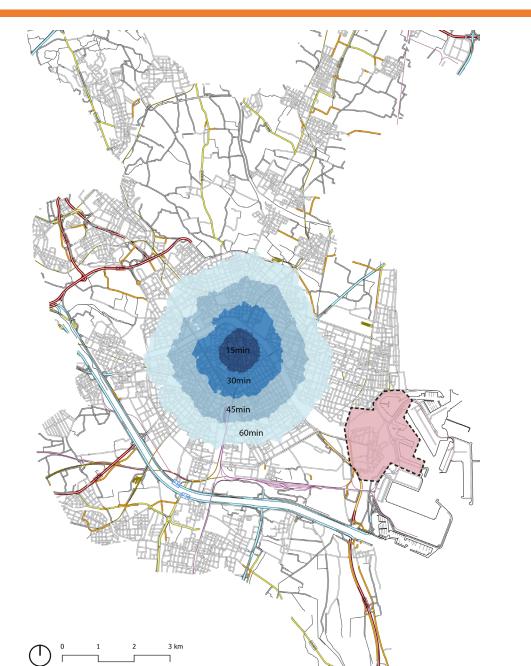


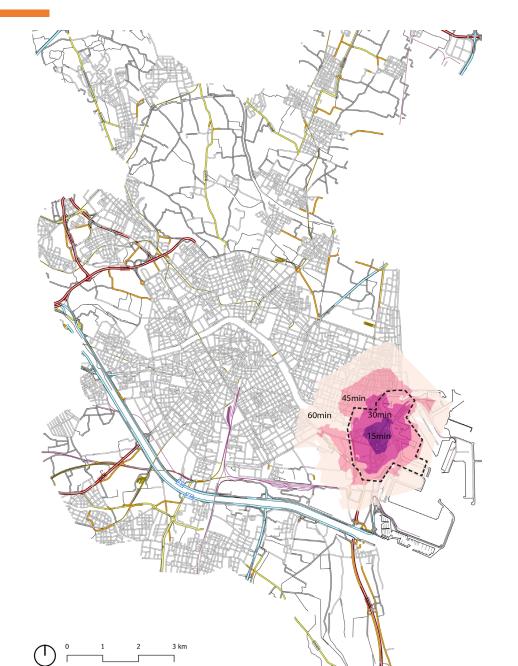
Starting from the centre of the city, the public transport network in Valencia runs through **radial corridors** which are not linked one another; thus, municipalities located at different corridors are left with almost no connections between them.

extension://oemmndcbldboiebfnladdacbdfmadadm/https://riur et.upv.es/bitstream/handle/10251/121314/Panel_PINOL_GOM EZ_BELEN.pdf?sequence=2

chrom

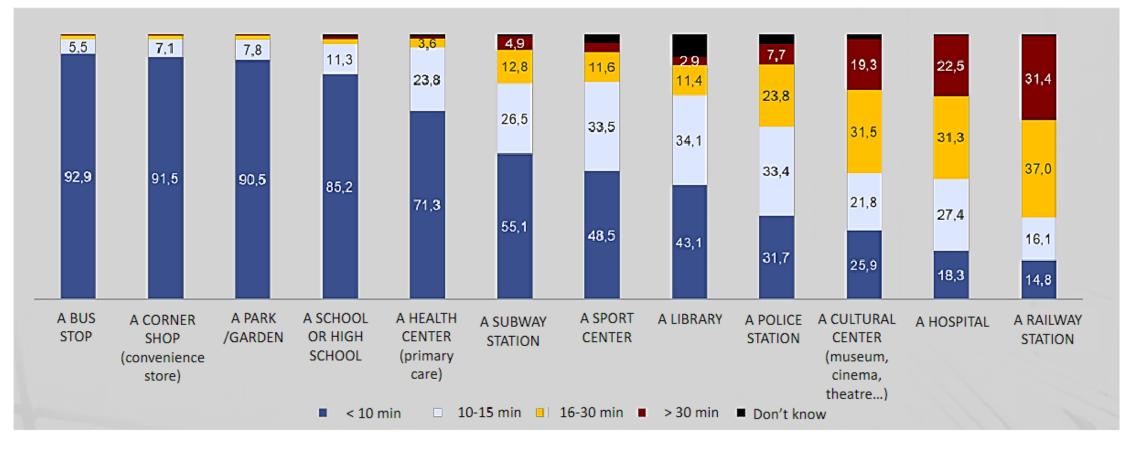
CITY SCALE: Existing Public Transport System




Proximity Metro Station

Proximity Bus Station

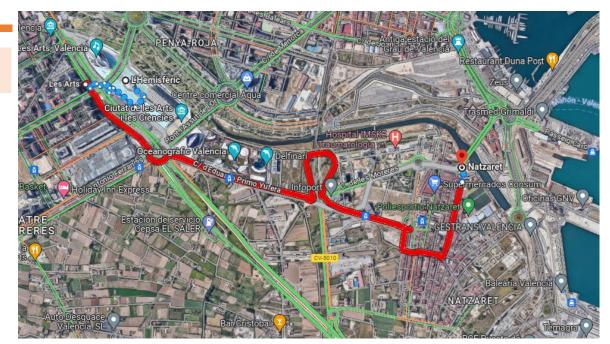
Proximity Bicycle network Source: CARTO Builder


CITY SCALE: PEDESTRIAN ACCESSIBILITY 15-60 min (isochrones)

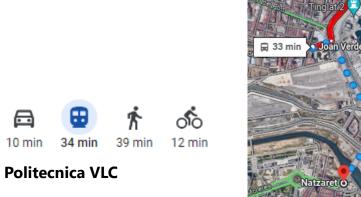
CITY SCALE: TRAVEL TIME TO KEY POINTS OF INTEREST

How long does it take you to go on foot to the following facilities/services from your home?

Barometer Valencia: https://www.valencia.es/es/cas/estadistica/barometro-municipal

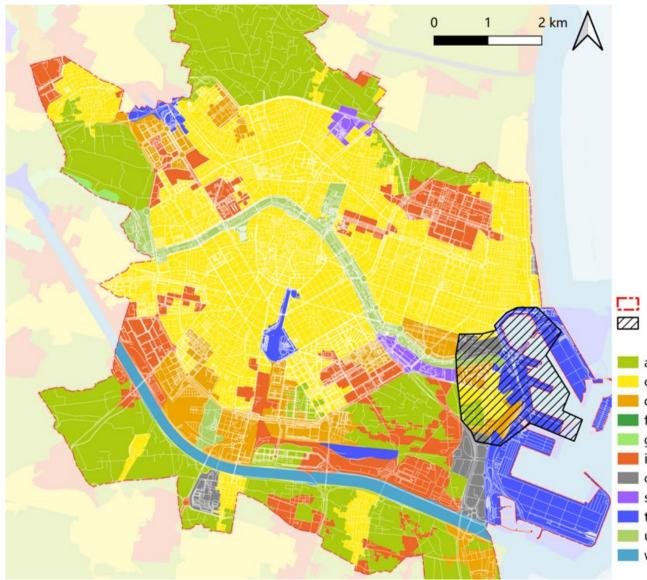

CITY SCALE: KEY POINTS OF INTEREST

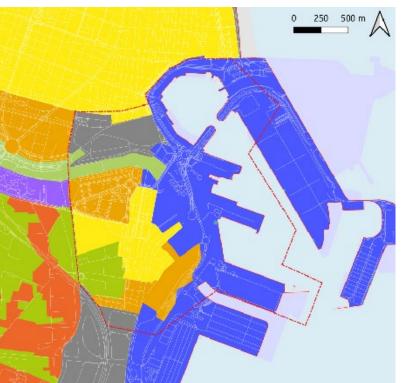
Date of traveling: Wednesday 8:00 AM


ര് 22 min 40 min 1h5 19 min

Inner City center & La Lonja Selda (UNESCO) & Mercado Central & St Nicolas de bari & a lot of other attractions in the city center

⊟

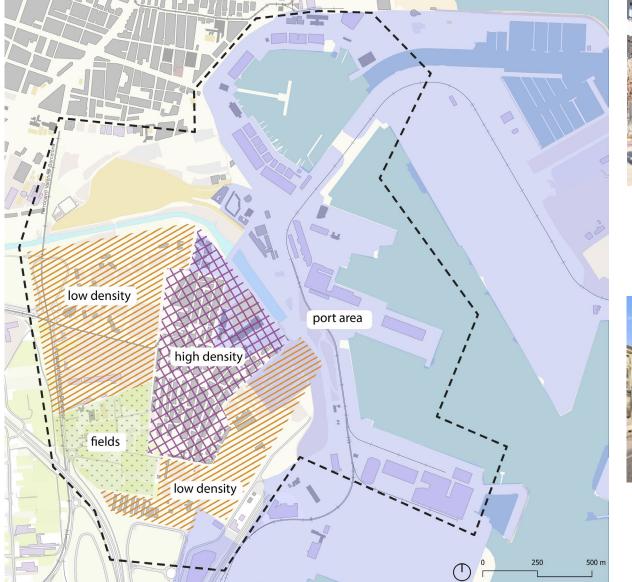



L'Hemisfèric (Museo) & Umbracle

	•	Ŕ	ోం
8 min	23 min	31 min	9 min

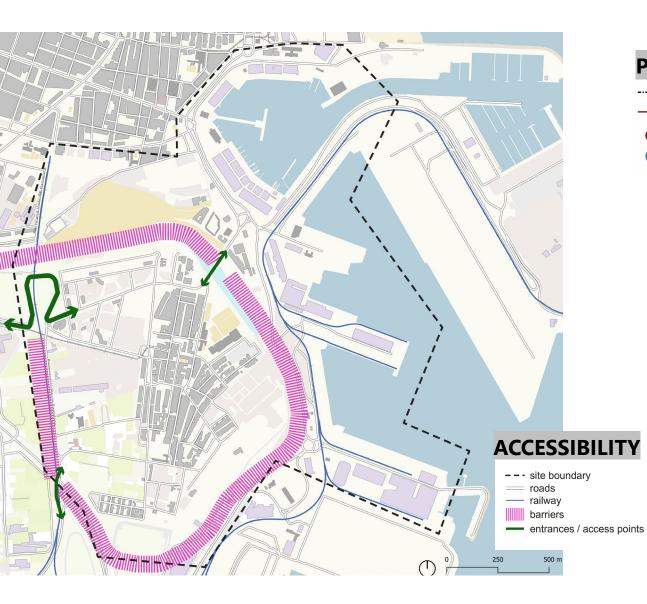
	₿	Ŕ	ోం
	33 min	28 min	9 min
Beach	1		

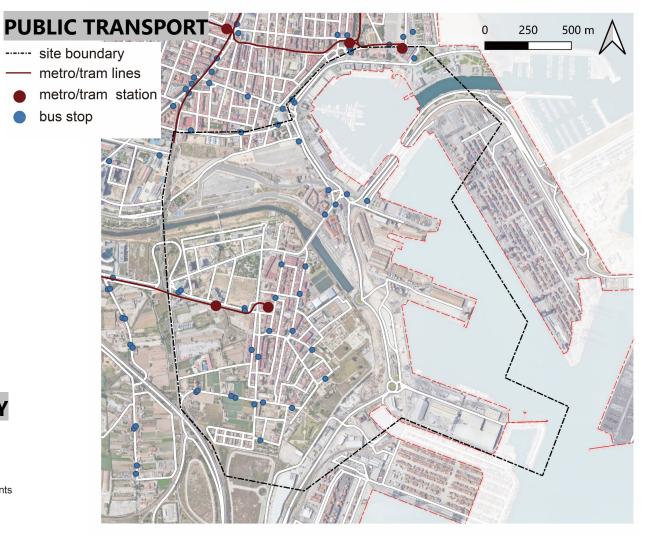
CITY SCALE: SETTLEMENT STRUCTURE


- boundary of city boundary of site
- agricultural land
 continuous urban fabric
 discontinuous urban fabric
 forest
 grassland
 industrial or commercial zones
 others
 sports and recreational space
 transportation
 urban green space
 water

High-density area

Agricultural area





Low-density area

Port area

Occupied by car, lack of space for pedestrians and cyclists


Lack of accessibility

Lack of accessibility across waterbody

Blank walls next to social spaces

Change of landscape towards the south of Nazaret

SITE: MOBILITY BEHAVIOUR

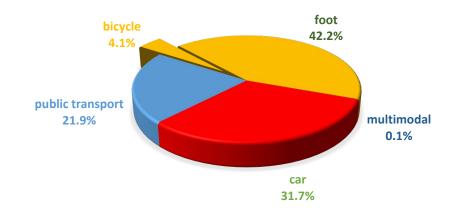
19 administrative districts

and each district is divided up into several quarters

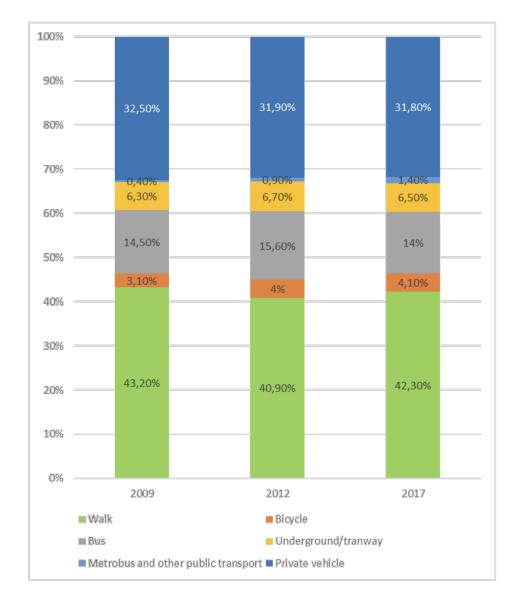
Transportation Hubs	Central Business District (CBD)	Residential Areas	Recreational and Entertainment Zones	Industrial Zones	Educational Institutions	Medical Facilities
Mercat Central, Aeropuert o	Benimaclet	Ruzafa	Jardines del Real, Marítimo	Polígono Vara de Quart	Blasco Ibáñez	Hospital Clínic Universitari
Train station, bus terminal. airports	Public transportaton networks	Adequate roads, sidewalks, and cycling lanes	Accessible and conv enient public transp ortation	Efficient road connections and transportation networks	Safe pedestrian routes and well- organized bus stops	Ambulance rou tes and well- connected pub lic transport
Requires effecient connections	High level of commuting from and to work	Daily commute	Non-commuting mobility	Freight and logistics traffic	High mobility during specific times of the day	Non- commuting but easy access

Turia River Park

The gardens repurpose a diverted riverbed to create a green corridor that connects different parts of the city, providing pathways for pedestrians and cyclists.



CITY: MODAL SPLIT



Car Usage for external movements dominates.

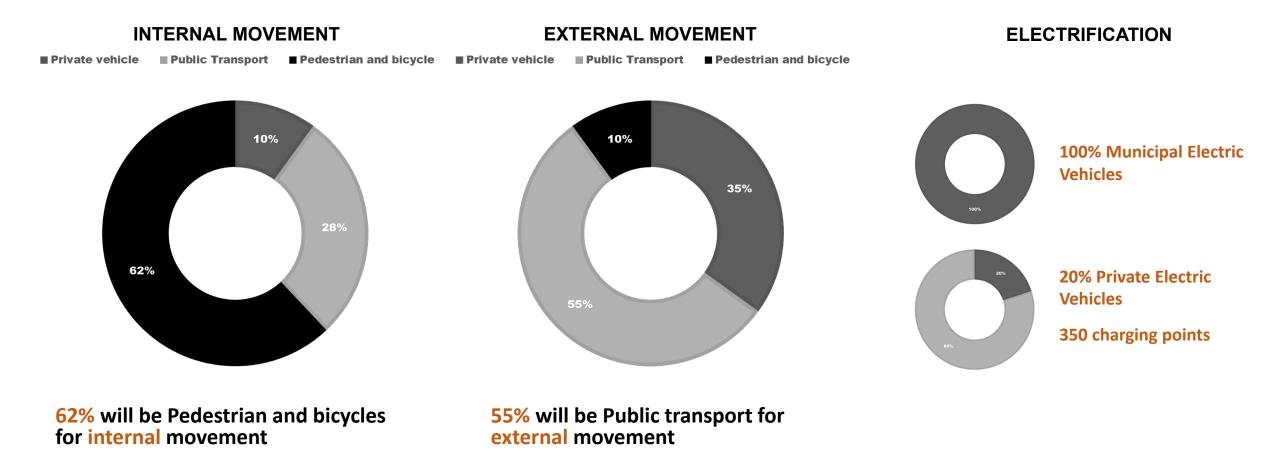
FOR ALL JOURNEYS UNDER 5 KM, PROPORTION OF THESE JOURNEYS UNDERTAKEN BY (2018)

Even in short-distance travel, bicycles are still hardly used.

Source: GREEN CAPITAL VALENCIA indicators application_Indicator 10_MOBILITY

Sustainable Metropolitan Mobility Plan for the València Area

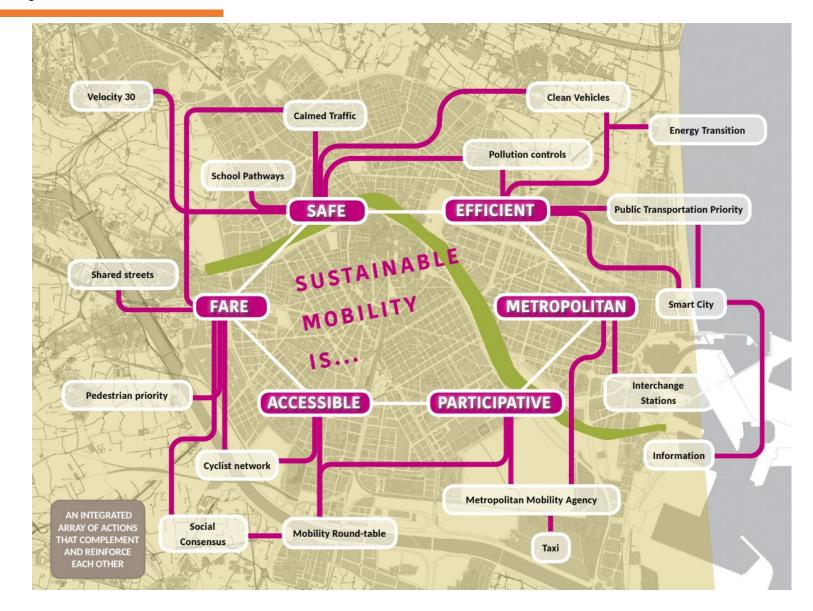
Vehicle Fleet		Public Transports (Weekdays)	
Total	473946		
Cars	354200	People transported by metro	42819679
Private cars	329157	Decision transmerted by ENAT	58328394
Per 100 inhabitants	41.3	People transported by EMT	30320394
Buses	876	People transported by metrobus	6821413
Trucks	21662	- · ·	424
Tractors	6979	Taxi ranks	124
Trailers	7132	Length of bike lanes	168km
Motorcycles	63198	-	
Mopeds	19899	Average number of trips by public bicycle.	11127


- Car ownership is quite high.
- Cycling share is rather low.
- Length of bike lanes is quite short. Compared to a small size town in Netherlands, the length of bike lanes is 128km.

CITY: EXISTING AND ONGOING PLANS 2020/2030

Energy Strategy 2020/2030: Envisions Mobility with 50% Reduction of Vehicles

Synergies with: Energy & Social Infrastructure



CITY: TOWARDS a (+) sustainable mobility in Valéncia

Ē

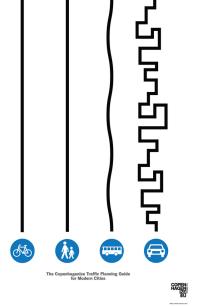
A City That Walks A City of Bicycles Public Transport Priority Rational use of Motor Vehicles Safer Mobility Intelligent Mobility Participative Mobility

- 1. As the Study area appears fragmented and disconnected, further developed tools will focus mainly on solving this issues
- 2. Identify any plans for the usage of ferries or boats for public transport at our site
- 3. Explore other challenges and opportunities in cross-teams
- 4. Integrate additional information from other groups into our toolkit

KEY CONSIDERATIONS:

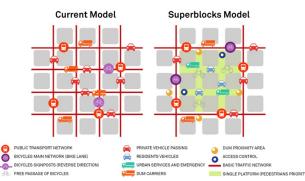
Accessibility	Speed limitations	Materials	Cycling routes	Shared space
Public transp developmen		Car/bike- sharing	Sustainable solutions	е

CASE STUDIES, LEARNINGS & SYNERGIES

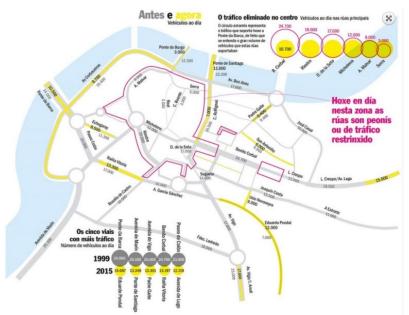


Ę

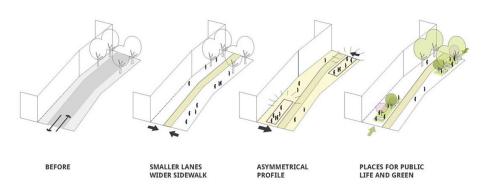
1.Paris, France: The 15-Minute City more options for travel distance **Social Infrastructure & Mobility**



4.Houten, Netherlands: Holistic cycling- and pedestrian oriented design | **Social Infrastructure & Mobility**



2.Copenhagen, Denmark: meeting diverse needs | Social, Blue & Green Infrastructure & Mobility


SUPERBLOCKS MODEL

5.Barcelona, Spain: Superblocks | **Social and Energy Infrastructure, & Mobility**

3.Pontevedra, Spain: Pioneer of car free city centers | Housing, Social Infrastructure & Mobility

6.Vienna, Austria: Redesigning "Mariahilfer Straße" | Social Infrastructure & Mobility 23

FOOLBOX: MOBILITY INFRASTRUCTURE

OVERARCHING GOALS

- 1. Reduce private cars
- 2. A strong sharing system of bikes (& cars)
- 3. Reduce traffic because of deliveries

TOOLBOX: MOBILITY INFRASTRUCTURE

TOOLBOX GOALS		General Aspects of Modal Split on a balanced level	Strong public transport network	Attractive walkable network	Attractive bicycle network	Reduce number of private cars	Sustainable and eco-friendly Cargo & Delivery systems
MEASUREMENT of Status quo Is it possible to measure it by indicators? e.g. parameters for	quantitative	 Number of network layers Access to public transport within 500m 	 Variety and number of public transport vehicles (metro, bus,tram)) -integrated fare system "Bonometro" 	 Width of Sidewalk No. of Obstructions Adequate public seating Percentage of shaded areas No. of streets with reduced vehicle speed No. of crosswalks 	 Coverage percentage of parking space and cyclists service Coverage percentage of green, blue and commercial interfaces in bike lanes Percentage of number of two- , three-, and four-lane roads 	 No. Of shared vehicles Parking fees 	 time of delivery number of transitions Wait time Amount of emissions N of damages
distances	qualitative	- Intersection / knots of those networks (multi modal spots or is every network existing for itself?)	 Intersection of networks Distance to transport network .Pedestrian crossing 	 Presence of Plants/Trees Lighting Traffic calming features Human social interaction opportunities/activities 	 Riding accessibility to metro and bus stops Condition of a cyclist hitting a red light Occupation condition of road space by cycling and driving 	 Traffic light timing No. of Parking space Distance between gas stations Separating slower and faster modes of transport 	 type of fuel Circularity (materials) carbon footprint costs
TOOLS in order to improve		Create multi-modal hotspots /terminals /mobility hubs within the city (probably such as the main Station in every city – but more of them).	-Should be accessible and for everyone -Expand and upgrade infrastructure -Integrated transport planning -Implement real-time tracking, increase frequency	 Pacification of internal roads (Social Activities) Expand areas devoted to pedestrians Implement 30 zones Safe mobility to schools Publicise benefits of walking 	 Enhancing travel convenience through parking space, services, transition possibilities and riding-friendly traffic light Enhancing the diversity of the cycling experience by passing through more green space, blue space and commercial interfaces Improving safety by addressing the relationship between cycling lanes and drivingroad and increasing the number of cycling lanes 	 Parklets creation Cul -de-sacs Repurposing Improvement of the traffic signal timing on individual roads Use span to separate slower and faster modes In each neighborhood there's a carsharing point and charging piles Car free zone 	 Multi-Modal Freight Terminals Last-Mile Delivery Robotics and Drones Eco-Friendly Packaging Certification System for emissions monitoring Behavioral Apps Smart Route Optimisation

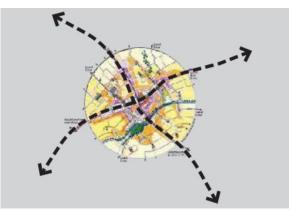
Goal	Aspects	Measurement of status quo	Tools	Relation to other infrastructures
		How many people have access to the public transport system within 150 m?	Have at least one accessible public transport system within 150m.	
	Accessibility	How many different networks of modalities are there?	Providing more options, developing micro- mobility, car/bike-sharing, jeli station	Social infrastructure
Sustainabl e		Costs	Have a balance between affordable public transportation costs & usage of sustainable energy	Social Infrastructure
Modal Split	Sustainability	Ratio of Pedestrian – cars – bikes – public transport	25/25/25	
	Time	How much time differences do we have in-between the different modals?	Have a balanced network, emission free networks should be more attractive	
	User Groups	Who is Using the different networks?	Create a safe space for all categories, including women, elder generation, kids, disabled etc	Social Infrastructure

<image>

Jelbi station: Multimodal transition, micromobility promotion

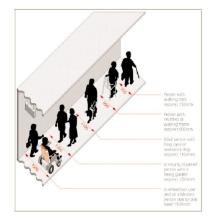
Mobility hub: Different scales for multimodal transition

Goal	Aspects	Measurement of status quo	Tools	Relation to other infrastructures
	Speedingss	Average travel time, On-time performance	Calculating departure and arrival times and defining acceptable thresholds	Energy infrastructure
	Speediness	Average frequency and waiting time	Identifying discrepancies for the actual and estimated travel time	Energy infrastructure
	Convenience	Number of shared vehicles	Planning more integrated modes of travel	Blue and Green infastructure
Strong Public	convenience	Coverage percentage of transport network	Making every (key) area well-connected	Social and Housing infrastructure
Transport Network	Security and	Incident rate, Number of vandalism and crime	Implementing more security measures	Social inrastructure
	Comfort	User Experience	Providing amenities like Wi-fi, charging station	Energy and Social infrastructure
	Evponce	Ticket fees	Evaulating and adjusting the fare structure (Regular commuters, student, seniors)	Social infrastructure
	Expense	Tourism	Ensuring public transport is the most desirable option for (Transport Pass)	


Accessibility

Measurement: Coverage of area, walking distance from public transportation, percentage of inclusivee facilities

Each and every areas with access of bus,tram,metro and cycle network


Extend metro and tram lines to cover underserved areas, especially suburbs and neighborhoods with high population density.

Source_ Design Manual For Urban Roads and Streets

Entire population including people with reduced mobility

Provide tactile paths, ramps, elevators and audible annpuncements for visually impaired passengers

Integrated Transport Planning

Measurement: Number of connected services, average waiting time and delay/arrival on time

Foster collaboration between different transportation authorities

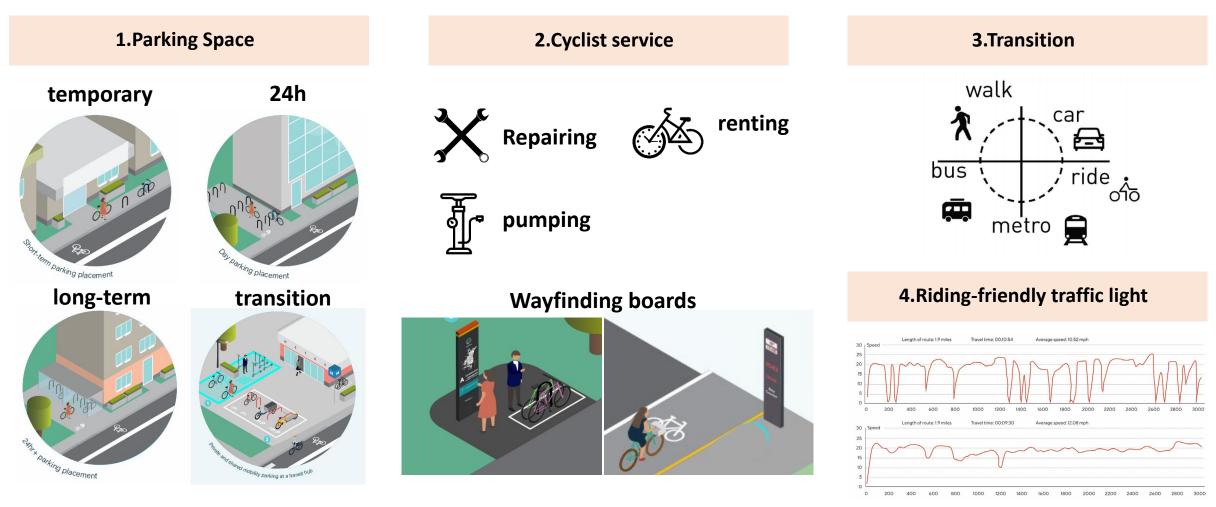
Increase the frequency of buses, trams and metro services

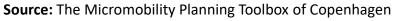
Implement real-time tracking, minimize waiting time

Goal	Aspects	Measurement of status quo	Tools	Relation to other infrastructures	
	Diversity	Density of Opportunities/Activities for human social interaction	Pacification of internal roads	Social Infastructure	
		Ease of walking (Ratio of faciltation & obstructions)			
	Comfort	Percentage of shaded areas	Expand areas devoted to pedestrians on streets	Social Infastructure Green Infastructure	
Attractive Walkable	connort	Width of sidewalk	Expand aleas devoted to pedestinans on streets		
Network	Safatu	No. Of crosswalks/intersections around educational buildings	Safe mobility for children	Social Infastructure	
	Safety	No. of streets with reduced vehicle speed	Implement 30 zones	Housing Infrastructure	
	Convenience	Tracking pedestrian usage on internal streets	Reduce external vehicles in residential areas by rerouting traffic	Housing Infrastructure	
	Convenience	Percentage of people choosing to walk – before and after	Publicise Benefits of Walking	Social Infastructure	

GOAL 3: Attractive Walkable Network

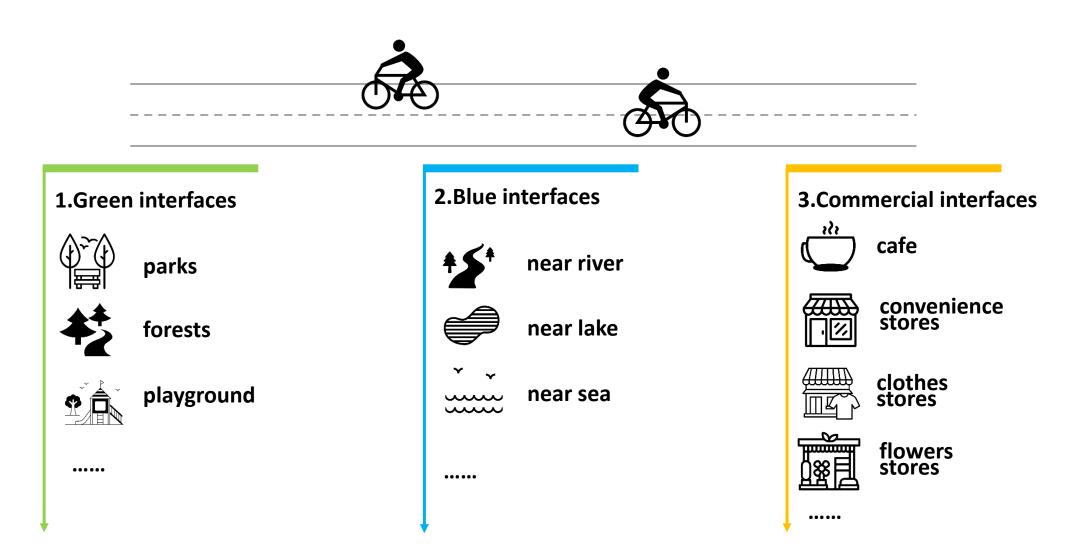
Shared Street




Mariahilfe strasse transformation: Shared space for pedestrians and cars Change of materials, reduction of speed, narrowing the lane, addition of furniture

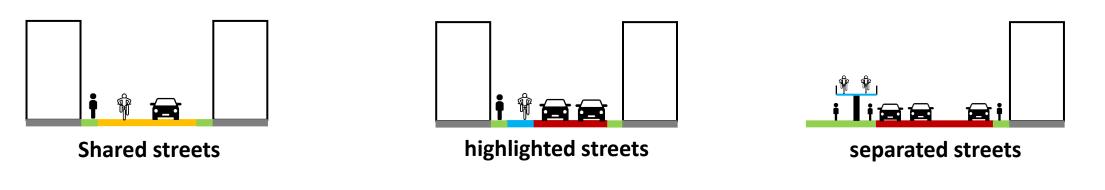
Goal	Aspects	Measurement of status quo	Tools	Relation to other infrastructures
		Coverage percentage of parking space (Length of cycling paths/number of parking spots)	Parking Space	Housing infrastructure Social infrastructure
	Convenience	Coverage percentage of cyclist service facilities (Length of cycling paths/number of service points) cycling paths/number of service points)		Energy infrastructure Social infrastructure
		Riding accessibility to metro and bus stops	Transition possibility	
Attractive		Condition of a cyclist hitting a red light	Riding-friendly traffic light	
bycicle network		Coverage percentage of green interfaces in bike lanes	Green interfaces	Green infrastructure
	Diversity	Coverage percentage of blue interfaces in bike lanes	Blue interfaces	Blue infrastructure
		Coverage percentage commercial interfaces in bike lanes	Commercial interfaces	Social infrastructure
		Occupation condition of road space by cycling and driving	Different types of cycling lanes	
	Safety	Percentage of number of two-, three-, and four-lane roads	Number of cycling lanes	

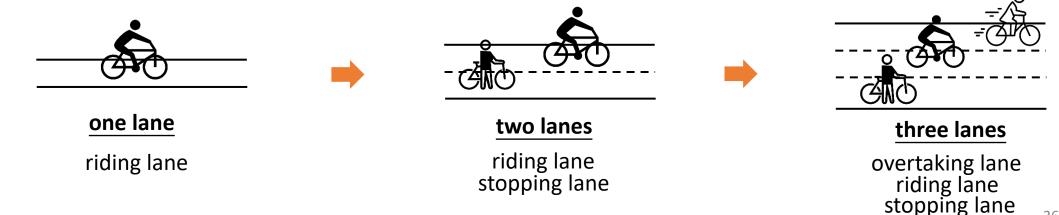
Convenience : Enhancing travel convenience through parking space, services, transition possibilities and riding-friendly traffic light



Source: The Micromobility Planning Toolbox of Copenhagen

Source: Copenhagenize Design Company

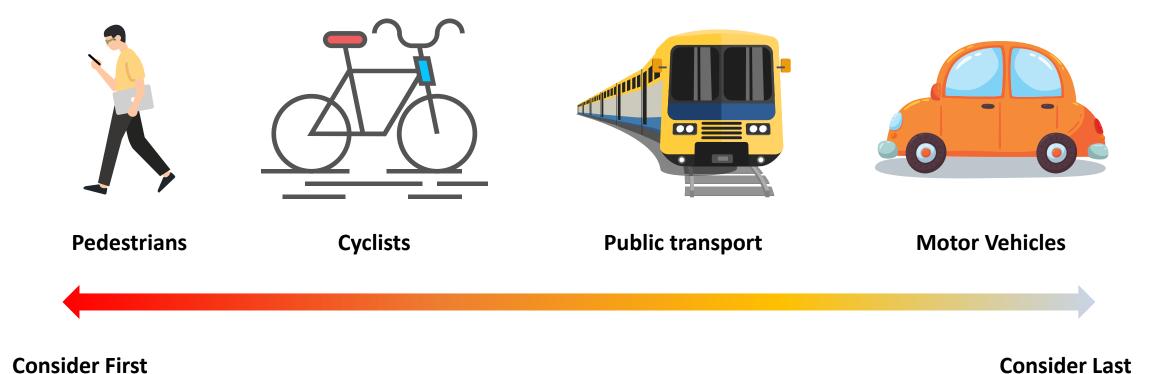

Diversity : Enhancing the diversity of the cycling experience by passing through more green space, blue space and commercial interfaces


GOAL 4: Attractive bicycle network

Safety: Improving safety by addressing the relationship between cycling lanes and drivingroad and increasing the number of cycling lanes

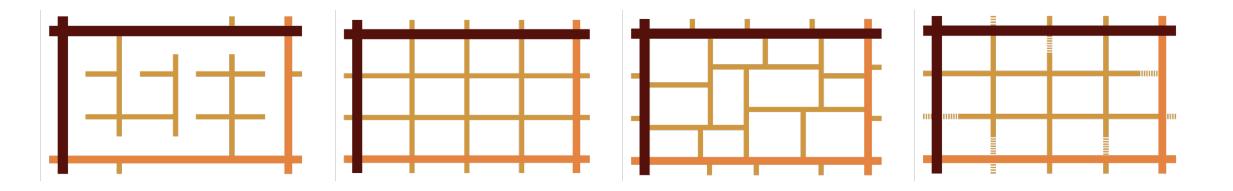
1.Types of cycling lanes: according to the traffic flow and road width

2.Number of cycling lanes: providing lanes for different speed requirements



Goal	Aspects	Measurement of status quo	Tools	Relation to other infrastructures
		Number of shared vehicles	In each neighborhood there's a carsharing point and charging piles	Housing & Energy & Social infrastructure
	Convenience	Number of parking space	Use neighborhood's garage	Housing & Social infrastructure
		Traffic light timing	Improvement of the traffic signal timing on individual roads	Social infrastructure
Attractive	Expense	Parking fees	Parking fee discount for shared vehicles	Social infrastructure
Car Sharing Systems	Speediness	Separating slower and faster modes of transport	Use span to separate slower and faster modes	
(Non-Traffic	& Traffic		Speed limitation in some roads (Filtered Permeability)	
		Integrated with pedestrians and cyclists	Pedestrian and cyclist first rule	Social infrastructure
	Safety		Car free zone	Housing & Social infrastructure
			Transition zone to other modals	Housing & Social infrastructure

Reduce Number of Private Cars


User Priorities

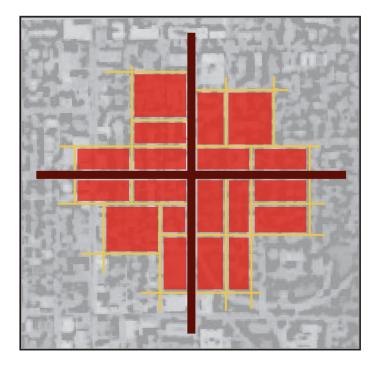
Measurement: To encourage more sustainable travel patterns and safer streets, designers must place pedestrians at the top of the user hierarchy

Integrated street networks (Vehicle Permeability)

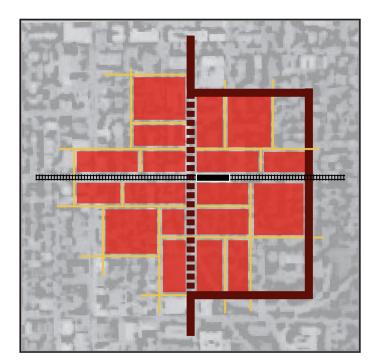
Measurement: Integrated networks do not require the same degree of restrictions to be placed on the movement of vehicles as is applied to more conventional/segregated networks.

Dendritic Network

Open Network


3 Way Off-set Network

Filtered Permeability Network


A network of integrated/self-regulating streets provides the framework for higher levels of accessibility for slow modes (including motor vehicles at slow speed) and strategic continuity for cross-network modes at more moderate speeds (such as public transport)

Integrated street networks (Car free zone)

Measurement: To create pedestrian and public transport orientated centres at the convergence of strategic links

Traditional Centre

Transit Orientated Centre

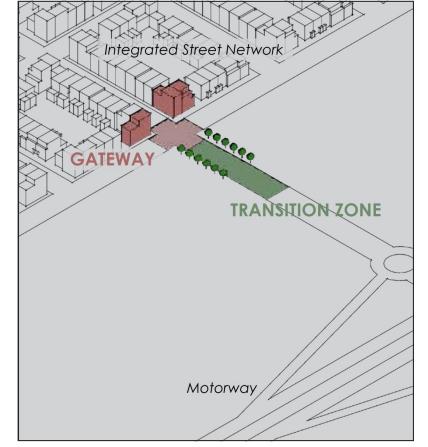


Illustration of a Gateway and Transition Zone that reinforces a large speed reduction when entering an integrated street network

Parklet Tool 2 types of reinforcing streets

Parking Day Initiative: claiming the area from cars **Source:** Design Manual for Parking Day

Urban hives: claiming the area from cars

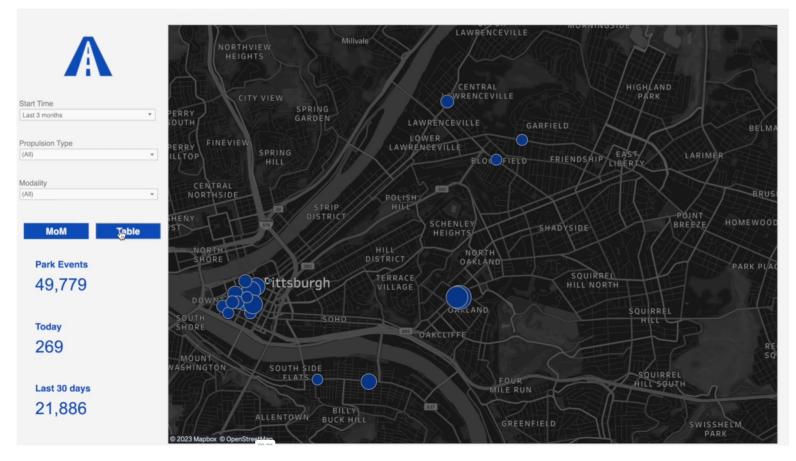
Goal	Aspects	Measurement of status quo	Tools	Relation to other infrastructures
		Number of certified companies & Number of emissions from delivering	Green Certification System / Emission Monitoring	Energy
Sustainable	Sustainability	single-use plastic waste	Eco-Friendly Packaging Materials	
and eco- friendly Cargo & Delievery Systems		usage of sustainable delivery methods	Behavioral Mobile Apps	Social
	Efficiency	travel time, fuel consumption	Smart Route optimization	
		travel time, fuel consumption	Multi-Modal Freight Terminals	
		delivery time, cost, and emissions	Last-Mile Delivery Robotics and Drones	

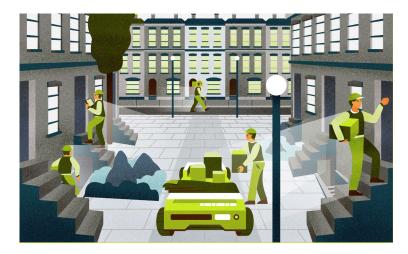
GOAL 6: Sustainable and eco-friendly Cargo & Delivery systems

>>Short/Medium Term Tools

Eco-Friendly Packaging Materials

Increase usage of sustainable delivery methods


Attractive delivery spots


Behavioral Mobile App

GOAL 6: Sustainable and eco-friendly Cargo & Delivery systems

>>Long - Term Tools

Smart Route Optimization & Certification

The Future of Urban Delivery: A Battle for the Last Meter

Source: Bits and Atoms and Dash Marshall

	System Advantages	Common Sense Challenges	Main Technical Challenge
Drones	Shifts freight traffic off congested surface streets.	Shortage of suitable landing sites and noise mitigation measures.	Dense urban environments can interfere with the wireless connections needed to operate drones, making them unreliable.
Unaided Conveyors	Lighter construction than streetworthy AVs, higher capacity and range than drones. Lower cost than both.	Sidewalks congested with AVs, crowding out humans.	Robotic systems to navigate stairs, ramps, elevators, and other access into buildings are still under development.
Conveyors & Porters	Dramatically reduces need for non-driving- related R&D. Creates opportunity for innovative human roles in local logistics.	Identifying business models for porters that create additional value while continuing to drive delivery costs down.	Viable today

Autonomous / Semi-autonomous delivery

Source: <u>https://www.automotus.co/</u>, http://avfutures.nlc.org/

MOBILITY INFRASTRUCTURE							
	ENERGY	BLUE	GREEN	SOCIAL	HOUSING		
How does Mobility relate to other disciplines?	Energy consumption to power vehicles and transportation systems, influencing both their efficiency and environmental impact.	Transportation networks utilizing water bodies, influencing accessibility, trade, and urban development along coastlines and rivers.	Sustainable transportation systems that integrate with natural elements, promoting eco-friendly modes of travel and enhancing urban resilience.	Enabling access to essential services and fostering community interactions through well- connected transportation networks that enhance societal well-being and inclusivity	Availability of efficient transportation options significantly influences housing accessibility, location choices, and urban development patterns.		
Mobility Infrastructure Tools & their relation to other disciplines	 In each neighborhood there's a carsharing point and charging piles Setting up bicycle pump points in the city 	 Planning cycling paths in blue spaces integrated into the city's cycling network 	 Long walkable green coridors/ Garden Streets Car free zone Planning cycling paths in green spaces integrated into the city's cycling network 	 Pacification of internal roads (Social Activities) Safe mobility to schools Publicise benefits of walking Expand areas devoted to pedes trians Digitally enabled high street Integration of bicycle parking space and services into social infrastructure planning Integration bikeway planning with commercial facilities 	 Implement 30 zones In each neighborhood there's a carsharing point Planning bicycle parking space in conjunction with housing infrastructure 		
Issues/Concerns to be considered while planning for Mobility	The balance between costs and sustainable solutions,		 Poor air quality, availability of shaded spaces 	- Pedestrian Safety and Accessiblity			

SOURCES

- Mobility Targets set for 2030 in Energy Strategy 2020/2030, Valencia City Council
- València 2030 Urban Strategy Local Action Plan
- Valencia Sustainable Urban Mobility Plan
- GREEN CAPITAL VALENCIA indicators application_Indicator 10_MOBILITY
- Dades 2023. Segundo Trimestre
- Sustainable Metropolitan Mobility Plan for the València Area
- Resumen Estadístico de la Ciudad de València (Recull) 2022
- CARTO Builder https://pinea.app.carto.com/map/88f75390-4542-44c2-8e91-f0834b581a31
- Design Manual for Urban Roads and Streets

THANK YOU FOR YOUR ATTENTION